The importance of cell-type specific epigenetic variation of non-coding regions in neuropsychiatric disorders is increasingly appreciated, yet data from disease brains are conspicuously lacking. We generated cell-type specific whole-genome methylomes (N=95) and transcriptomes (N=89) from neurons and oligodendrocytes from brains of schizophrenia and matched controls. The methylomes of these two cell-types are highly distinct, with the majority of differential DNA methylation occurring in non-coding regions. DNA methylation difference between control and schizophrenia brains is subtle compared to cell-type difference, yet robust against permuted data and validated in targeted deep-sequencing analyses. Differential DNA methylation between control and schizophrenia tends to occur in cell-type differentially methylated sites, highlighting the significance of cell-type specific epigenetic dysregulation in a complex neuropsychiatric disorder. Our resource provides novel and comprehensive methylome and transcriptome data from distinct cell populations from schizophrenia brains, further revealing reduced cell-type epigenetic distinction in schizophrenia.